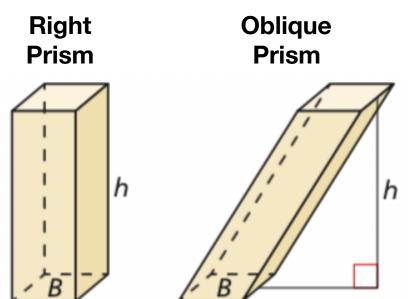
Chapter 11 Circumference, Area, and Volume

- 11.1 Circumference and Arc Length
- 11.2 Areas of Circles and Sectors
- 11.3 Areas of Polygons
- 11.4 Three-Dimensional Figures

- **11.5 Volumes of Prisms and Cylinders**
- 11.6 Volumes of Pyramids
- 11.7 Surface Areas and Volumes of Cones
- 11.8 Surface Areas and Volumes of Spheres

Volume of a Prism


Volume: The # of non-overlapping cubes that will fit inside a given interior.
Volume of a Prism

V = Bh

Cavalieri's Principle

If two solids have the same height and the same crosssectional area at every level, then they have the same volume.

$$V_{Right} = V_{Oblique}$$

Volume of a Prism and a Cylinder

Volume: The # of non-overlapping cubes that will fit inside a given interior. Volume of a Prism Volume of a Cylinder

V = Bh

Right

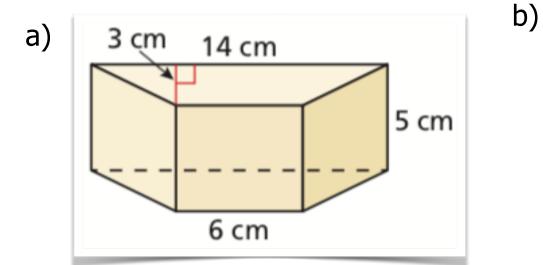
Cylinder

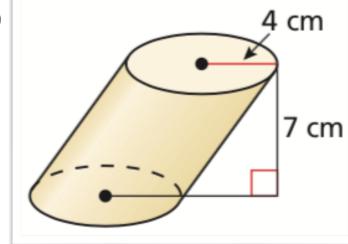
h

V = Bh

Oblique

Cylinder

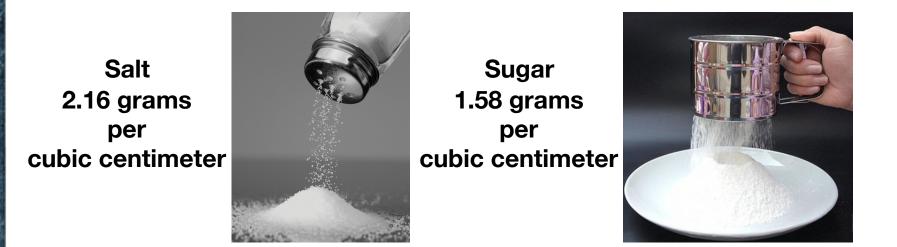

h


 Cavalieri's Principle If two solids have the same height and the same crosssectional area at every level,

then they have the same volume.

$$V_{Right} = V_{Oblique}$$

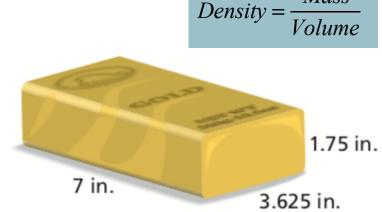
Calculate the volume of each solid



Density

Density is the amount of matter that an object has in a given unit of volume.

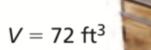
$$Density = \frac{Mass}{Volume}$$


• Different materials have different densities, so it makes it easier to distinguish look-a-likes.

Density

Example

The diagram shows the dimensions of a standard gold bar at Fort Knox. Gold has a density of 19.3 grams per cubic centimeter. Find the mass of a standard gold bar to the nearest gram. (1 inch = 2.54 centimeters)



Mass

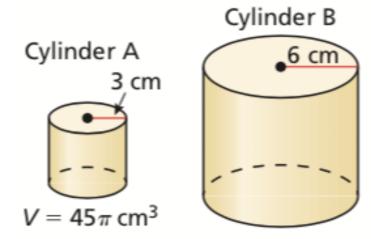
Volume

Example

You are building a rectangular chest. You want the length to be 6 feet, the width to be 4 feet, and the volume to be 72 cubic feet. What should the height be?

6 ft

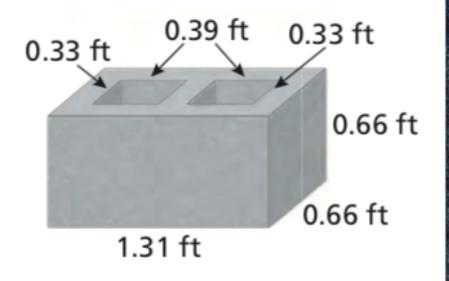
4 ft


Similar Solids

- Two solids of the same type, like cylinders, with equal ratios of corresponding linear measures, such as heights or radii, are called similar solids.
- The ratio of the corresponding linear measures of two similar solids is called the **scale factor**.

Example Cylinders A and B are similar.

a) What is the scale factor?


b) What is the volume of cylinder B?

Volume of Composite Solid

Example

Compute the volume of the concrete block. The two holes go all the way through.

